A Comparison of Spatial Feature Extraction Algorithms for Land-Use Classification with SPOT HRV Data
نویسندگان
چکیده
A large number of spatial feature extraction methods were developed during the past 20 years. The effectiveness of each method has been assessed in different studies using different data. However, there have been few application-oriented studies made to evaluate the relative powers of these methods in a particular environment. In this study, three spatial feature extraction methods have been compared in the land-use classification of the SPOT HR V multispectral data at the rural-urban fringe of Metropolitan Toronto. The first two methods are the well-known gray level co-occurrence matrix (GLCM) and the simple statistical transformation (SST), The third method is the texture spectrum (TS), which was developed recently. Twenty-seven spatial features were derived from the SPOT HRV Band 3 image using these methods. Each of these features or a combination of two of these features were used in combination with the three spectral images in the classification of 10 land-use classes. Results indicated that some spatial features derived using the GLCM and the SST methods can largely improve the classification accuracies obtained by
منابع مشابه
کاهش ابعاد دادههای ابرطیفی به منظور افزایش جداییپذیری کلاسها و حفظ ساختار داده
Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...
متن کاملDeveloping a New Method in Object Based Classification to Updating Large Scale Maps with Emphasis on Building Feature
According to the cities expansion, updating urban maps for urban planning is important and its effectiveness is depend on the information extraction / change detection accuracy. Information extraction methods are divided into two groups, including Pixel-Based (PB) and Object-Based (OB). OB analysis has overcome the limitations of PB analysis (producing salt-pepper results and features with hole...
متن کاملSecond-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain
Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...
متن کاملDevelopment of an Automatic Land Use Extraction System in Urban Areas using VHR Aerial Imagery and GIS Vector Data
Lack of detailed land use (LU) information and efficient data collection methods have made the modeling of urban systems difficult. This study aims to develop a novel hierarchical rule-based LU extraction framework using geographic vector and remotely sensed (RS) data, in order to extract detailed subzonal LU information, residential LU in this study. The LU extraction system is developed to ex...
متن کاملCommon Spatial Patterns Feature Extraction and Support Vector Machine Classification for Motor Imagery with the SecondBrain
Recently, a large set of electroencephalography (EEG) data is being generated by several high-quality labs worldwide and is free to be used by all researchers in the world. On the other hand, many neuroscience researchers need these data to study different neural disorders for better diagnosis and evaluating the treatment. However, some format adaptation and pre-processing are necessary before ...
متن کامل